LICRE : unsupervised feature correlation reduction for lipidomics
نویسندگان
چکیده
منابع مشابه
LICRE: unsupervised feature correlation reduction for lipidomics
MOTIVATION Recent advances in high-throughput lipid profiling by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) have made it possible to quantify hundreds of individual molecular lipid species (e.g. fatty acyls, glycerolipids, glycerophospholipids, sphingolipids) in a single experimental run for hundreds of samples. This enables the lipidome of large cohor...
متن کاملFeature Reduction for Unsupervised Learning
In this project, four unsupervised feature reduction algorithms for clustering problem were investigated and experimented upon two sets of data – handwritten digits data set and the functional magnetic resonance imaging (fMRI) resting state data set. Ratio of sum of squares (RSS), leverage score (LEV), and Laplacian score (LAP) were used to rank the influences of the features in the clustering....
متن کاملUnsupervised feature dimension reduction for classification of MR spectra.
We present an unsupervised feature dimension reduction method for the classification of magnetic resonance spectra. The technique preserves spectral information, important for disease profiling. We propose to use this technique as a preprocessing step for computationally demanding wrapper-based feature subset selection. We show that the classification accuracy on an independent test set can be ...
متن کاملFeature Selection for Unsupervised Learning
In this paper, we identify two issues involved in developing an automated feature subset selection algorithm for unlabeled data: the need for finding the number of clusters in conjunction with feature selection, and the need for normalizing the bias of feature selection criteria with respect to dimension. We explore the feature selection problem and these issues through FSSEM (Feature Subset Se...
متن کاملEmbedded Unsupervised Feature Selection
Sparse learning has been proven to be a powerful technique in supervised feature selection, which allows to embed feature selection into the classification (or regression) problem. In recent years, increasing attention has been on applying spare learning in unsupervised feature selection. Due to the lack of label information, the vast majority of these algorithms usually generate cluster labels...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2014
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/btu381